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ABSTRACT

The major problem addressed by this research is how to develop a motion control

algorithm for stable and precise control of the motion of an autonomous mobile robot.

The approach taken was to clearly define the robot's motion descriptions and to design

a high-level, machine independent robot control language called MML (Mode-based

Mobile robot Language).

The results are that the robot.. , im-." -nent line to line, line to circle, circle to circle

path tracking or the combinations of tt.e. Dased on the motion control algorithm which

was developed in this thesis, the robot is able to r e external sensors to execute complicated

missions such as obstacle avoidance (sonar is used in tJ'is thesis work).
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I. INTRODUCTION

There are many different applications for the autonomous mobile robot. Especially in

military operations, a robot can execute many dangerous missions which human beings

may possibly risk their lives. Removing mines, taking photographs in hazardous areas or

even fighting with detected targets are just a few of the possible applications.

The motion control theory is the basis of successful control the robot (autonomous

wheel controlled vehicle). Based on the robot's smooth motion control algorithm which has

been developed in this thesis work, we can precisely and stably control the robots' motion.

After the success in controlling the robot's motion, the robot will be able to execute some

complicated motion missions such as path tracking and obstacle avoidance. To allow users

to easily use the robot ('Yamabico-ll' is the experimental robot for this thesis work), the

robot control language MML (model-based mobile robot language) was investigated and

improved in this thesis work.

The path tracking mission includes line to line tracking, line to circle tracking, line to

parabola tracking, circle to circle tracking or all the above motion combinations. A typical

path tracking mission can be described as this: The robot is setting by the road and moves

to the center of the road and keeps moving for two blocks, then it makes a left turn to

another road and moves for one block later and parks on the side of the road (Figure 1).

The obstacle avoidance mission will use the path tracking algorithm and external

sensors to allow the robot to avoid possible obstacles (which may exist in its original path)

and return to its original path after it safely passes obstacles (Figure 2).
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FIgure 1: A path tracking mission.
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U. PROBLEM STATEMENTS

The problem investigated in this thesis is how to efficiently describe the robot's

motions and how to precisely and stably control the motions of the autonomous mobile

robot "Yamabico-I I". This problem is subdivided into the following subproblems:

1. Is there a unified and user-friendly standard high-level language to describe robot's

motions?

2. How to clearly and efficiently describe the robot's motions (motion description)?

3. How to let the robot know its current position (odometry function)?

4. How to compute the robot's next translational and rotational speed for the purpose

of tracking a given path?

5. How to precisely control motors to let the robot reach the desired speed?

4



MI. MML REAL-TIME CONTROL SOFTWARE ARCHITECTURE

The control language used for programing Yamabico- I I is MML (model-based mobile

robot language). MML library functions are categorized into motion, sonar, W/.,

geometry,.... For motion control, we need short sampling time (in Yamabico- I l's case, the

robot takes 10 ms for the motion feedback control). Since motion control takes so much of

the CPU time, we separate this low-level control process from robot's main computation.

In Figure 3, the MML real-time control software architecture is divided into two

different process levels, one is the foreground process for the user program and the other is

the background process for the motion feed-back control functions.

The user interface functions include two types of motion functions, immediate and

sequential functions. Users can use these functions to control the robot without knowing

the low level functionality. These user interface functions are the tools which will be

provided to users to allow them to command the robot. In our autonomous mobile robot

path-tracking mission which was described in Chapter I, the user only needed two kinds of

motion functions such as line and bline functions to let the robot accomplish its mission.

The fewer commands needed, the easier to write the user program for the user. The user

interface functions and the robot's motion description will be discussed in detail in

Chapter IV.

There is an instruction buffer between the foreground process and the background

process. It is a circular queue design. The user interface functions used in the user program

will be put into the queue. The background process functions will be executed every 0.01

seconds (10 ms) once the mission starts. The motion control program in the background

process will get the instructions from the queue whenever it is needed. The details of the

motion control program in background will be described in Chapter V.

5i
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Figure 3: MML Real-Time Control Software Architecture.
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IV. LOCOMOTION FUNCTIONS IN THE MML LANGUAGE

A. MOTION DESCRIPTION BY PATH ELEMENTS

In order to clearly describe the robot's motion, some definitions and conventional

terms need to be introduced.

Define the robot's path by the geometrical method. A configuration q stands for a triple

q = (p, 09, ),

where p is a point, 0 is an orientation, and ic is a curvature. A configuration q is a

representation of a directed line or a directed circle, when x is less than zero it is a clockwise

circle and it is a counterclockwise circle when ic is greater than zero, (Figure 4). A directed

parabola is represented by a directed line q (directrix) and a point p (focus), (Figure 5). A

deecubic spiral path element is defined by two configurations q, and q2 (in this case

its curvature ic is not important), (Figure 6).

A path is a sequence (el, e2, e3,...,e.), where each ej is an element. For an arbitrary

configuration q and a point p, either one of the following is said to be an element (e):

configuradon, parabola, cubicjspiral.

Figure 4: A configuration represents a line or a circle (directed).
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Figure 6: cubic-spiral.
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B. USER INTERFACE FUNCTIONS

The meaning of each element e is defined as follows (each element means a directed

simple path if e is not a configuration).

1. Iine(q). This path segment does not have any endpoints.

2. Parabola(q) means a directed parabola determined by the focus p and the directrix

q. (The curvature part of K of q is ignored.)

3.forwardline(q) means a part of element line(q). It has a start p.

4. backward line(q) means a part of element line(q). It has an end p.

5. coitlg(q) does not mean a directed path segment by it self. It must have elements

which specifies another configuration in the previous and the following position in its path.

A pair of config(q) define a cubic-spiral path segment.

C. TRANSITIONS BETWEEN PATH ELEMENTS

There are legitimate transitions between path elements. If two adjacent elements

specified by two sequential functions are intersecting, the robot leaves a "leaving point" on

the first element and, after then, tracks the second one. If there is no intersections between

two adjacent path element, the robot immediately leaves the first one.

The "leaving point" is the last point on the first element which does not make the

following trajectory oscillatory. The tracking algorithm realizes the critical damping

solution in all cases. This leaving point calculation is a time consuming task and is being

done in real-time in the MML software system. Tablel shows the permissible types of

motion function transitions.

9



TABLE 1: PERMISSIBLE TRANSITIONS IN MOTION FUNCTIONS

From / To line parabola backward-line Forward-line Config

Line TR TR TR -

Parabola TR - TR ..

Forward line TR TR TR I --

Backward line TR E TRE TRE CS CS

Config - - - CS CS

* TR: normal transition. TRE: transition at the endpoint.
CS: cubic spiral. -: not permissible.

D. TRANSITIONS BY IMMEDIATE MOTION FUNCTIONS

There are immediate motion functions which affect the robot's motion immediately

without being stored in the instruction buffer.

"stopO", "skip', "halt", "speedO" and "set c" are examples of immediate functions.

when "stopO" and "skip" are used, the robot leaves the current sequential motion function

to execute this new immediate function.

10



E. MOTION FUNCTIONS IN YAMABICO-I1

1. Line

Syntax: void line(q)

Configuration q;

Description:

The argument q = (p, 0, x) specifies a straight line or a circular arc. Ba-

the robot is supposed to follow this directed path element. The robot leaves this element

when it comes to a leaving point or when an immediate motion function are called. Figure

7 shows the robot tracks a line path element from its previous configuration. The robot's

speed is automatically reduced to allow the robot to make sharp trns. This is reflected by

the dependency between ic and the robot's speed. In simple terms, the robot's speed must

be reduced to allow it to move safely with larger values of r. When next path element is

given, the robot leaves the current path element in the nmnner described in section C and D.

."kq")

(q.x, q.y)

robot %• -"t,¢'

Figure 7: The line function.
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2. Fl.ne (forward line)

Syntax: void fline(q)

Configuration q;

Description:

The argument q = (p, 0, ic) specifies a straight line or a circular arc. Basically

the robot is supposed to follow this directed path element. This function makes the robot

track this path element from the point P, i.e., the robot passes through the configuration

(Figure 8). To properly use this function, the robot's last path element needs a specified

end-configuration. Any path segment which does not provide a specified end-

configuration will not allow to combine withfine function.

If afline function caum after a fine function, it is an error usage offline function.

Because a line function does not have a end-configuration.

Tlwking until the robot passe
do- cnfigmaon p (qx.y)

robot

• robot

Figure 8: The Nine function.
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3. Bline (backward line)

Syntax: void bline(q)

Configuration q;

Description:

The argument q - (p, 0, ic) specifies a straight line or a circular arc. Basically

the robot is supposed to follow this directed path element. The robot will track the line q

until it passes q itself and will transfer to the next path segment. If there is no next path

segment, the robot will start to slow down at the configuration q and eventually stop with

the current acceleration rate.

Precisely speaking, the robot leaves the segment q when the robot's image

reaches q (or is downstream of q). (The image of a point P on a path z is defined as the

closest point on x from P)

The current path t

Figure 9: The bline function.
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4. Skip

Syntax: void skipO

Description:

When the robot reads a skip function, it will immediately leave the current path

segment and will track the next one. All the motion functions called before the shp function

will be discarded and the path function which follows it will be tracked hereafter (Figure

10). In normal usage, a skip function comes with some tests.

S on-rent pith segment

Figure 10: The skip function.
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Example:

For example, in an obstacle avoidance case, while the robot is tracking on LI,

the robot's sonar continuously senses the distance to a possible obstacle in front. When the

distance is less than 100 centimeter, a skip function will be called and the robot will

immediately transfer to 12 (Figure 11). An example program in pseudocode for this

behavior is:

I
line(L{);

while (sonar-dectect-distance >= 100);

skipO;

line(L2);

}

100

IL2

Figure U: An application example for a skip function.
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5. Stop

Syntax: void stop(q)

Configuration q;

Description:

The robot will track on the line q and stop at it. When the rest of the path is equal

to v2 / 2 a, where v is the current speed and a is acceleration, it will start decelerating and

will fully stop at q.

Precisely speaking, this deceleration process is controlled not by the robot's

position itself but by its image on q, Le., the stop function works in such a way that the

robot's image will stop at q or if the robot's image is already downstream of q, it

immediately decelerates.

The rest of path

Figure 12: The stop function.
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V. FUNCTIONAL ELEMENTS IN BACKGROUND PROCESS

There is a motion control program which is executed every 0.01 seconds in the

background process. It is not necessary for users to know how motions are controlled and

users will not be allowed to use these control functions. This motion control program

smoothly and precisely controls the robot's motions. The architecture of these background

control functions is shown in Figure 13. The notations used in this chapter are defined as

followings:

X: x coordinate of the robot's position.

Y: y coordinate of the robot's position.

0: the robot's current orientation.

K the robot's current curvature.

AP.- left wheel traveling distance.

AL. right wheel traveling distance.

AS: the traveling distance of the robot.

Aq: the angular change of the robot.

Uv: commanded translational velocity of the robot.

U,,: commanded rotational velocity of the robot.

17
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Figure 13: Background Motion Control Architecture.
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A. INCREMENTAL MOTION ANALYSIS

The autonomous wheeled vehicle, 'Yamabico- 11', has two motors to drive each of the

two wheels separately. Each motor has a shaft encoder to sense the rotation of the motor's

turning shaft. One complete shaft rotation gives five hundred and twelve pulses. Thus, the

left and right shaft encoder can sense the actual amount of the motor's rotation. The

travelling distance of the left and right wheels are computed through encoder readings,

reduction gear box ratio (1:24) and wheel radius (10 cm) during the sampling time period

of 0.01 seconds. The robot speed is obtained by dividing the distance with the sampling

time. 'Yamabico- 11' uses the differential drive method for steering. The difference

between two wheels' distance divided by the robot's width (52.4 cm) is AO, the angle the

robot has turned during the last sampling time. The travelling distance(AS), the rotational

angle of the robot(AO) and both wheel's velocities are calculated by the following

equations. Figure 14 illustrates their relationships with the robot.

AL
2W

FIgure 14: The robot's AS and AO.
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r = wheel radius = 10 cm

AL = LEFrDISTANCE = N1 (left encoder readings) / 512 x (1 / 24) x 2 x r

AR = RIGHTDISTANCE = Nr (right encoder readings) / 512 x (1 / 24) x 2 z r

AS=(AR+AL)/2

ADISTANCE = AR - AL

2W= robot width = 52.4cm

AO = ADISTANCE / 2W

VELOCITY = AS / 0.01 second

The precise control of two drive wheels will provide the robot desired orientations

(heading directions) and positions. It will let the robot follow the desired tracking path. All

different kinds of motions of 'Yamabico- I', such as line to line, line to circle, circle to

circle path tracking can be accomplished by this type of motion control.

By the robot's odometry sensor informations, we could let the robot know how far it

has travelled and what its orientation is at any moment in time. After the robot gets these

data from the odometry-sensor-reading function, the current-configuration-computation

function will continuously compare the robot's current configuration (position and

orientation) with the robot's designated path and keep the robot always on the correct

tracking path. This path tracking capability will be included inside the commanded-speed-

computation function and will be described later in this chapter.

B. CURRENT CONFMGURATION COMPUTATION

As mentioned in section A of this chapter, in order to let the robot always keep moving

on the desired path, the correct robot's current configuration (positior and orientation) will

be very important information. After the odometry sensor reading function is executed, the

robot's travel distance(AS) and the robot's rotational angle change(A0) are known. By

using this data, the robot's current position, orientation and its kappa can be computed as

following:

20



Our implementation robot of 'Yamabico- 11' is a two dimensional autonomous mobile

robot. The two dimensional Cartesian coordinate with X and Y axises has been used to

represent the robot's position.

Let the robot's original position be (XoY 0 ) and the robot's new position be (XI,YI).

From the fnlowing picture Figure 15, we know X =X0 + AX, Y1 f YO + AY. The

equations for calculating AX, AYare:

AX = sin(O+(AO/2)) * d

AY = sin("+(A0/2)) * d

d =AS, ifAO =0.

d =AS * sin(AO/2) /(AO/2), if AO * 0.

It

(AXtoYo)I 0+A
X AY = sin(Os(A0/2)) d

AX =sin(6+(AO/2)) *d

Figure 15: The relationship of robot's positions.
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Figure 15, shows the robot's orientation change while the robot is tracking a curved

path from position (X0,Y0) to another position (X1 ,YI). Let the robot's old orientation be

0, then the robot's new orientation will be 0+A0.

The robot's motion control theory is the steering function. For understanding the

control theory, a conventional notation kappa (IC), must be introduced. When the robot

tracks on an arbitrary curve, the robot's state can be represented by three parameters,

position, orientation and curvature. The curvature, K, is defined by dO / dS where the dO is

the robot's orientation change, the dS is the robot's traveling distance within one unit of

time. The theory of the steering function is to control the robot's motion by changing its

curvature.

C. CONTROL RULE

After the current-configuration-computation function has been executed, the robot

gets enough information to know its current state. The steering function will be executed

to get the robot its commanded speed. The steering function will use the path-tracking

theory [Ref. 1] to control the robot's motion. Figure 16 shows the functional steps inside

this programn

1. Steering Control

Before we describe the details of the steering function and path-tracking theory,

a notation image needs to be defined first. The robot's image is defined as the projection

from the robot's current configuration to the robot's goal path. Figure 17 shows the robot's

images.

22



current
X Y 0 path

The robot's image computation

x Y
image closest distance calculation

robot's The kappa computation(steering function)
goal speed

The robot velocity control di/dS

dS/dt

The translational & rotational speed calculation

Uv •

Figure 16: The control rule module.
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Robot's current state

Robot's ima

Figure 17: The robot's images.

The method to control our mobile robot is by changing the robot's curvature. The

steering function use the path-tracking theory [Ref. 1] to compute the derivative of

curvature. The equation is defined as:

dic/dS = - (aAic + bAO + cY*) - - the equation of steering function.

and,

a = 3K, where K is a positive constant.

bf3K2

C=K 3

A= -robot's kappa - image's kappa

Y= signed distance between robot's current position and its image.

24



In order to check the path-tracking algorithm and the steering function, a

simulation program in LISP had been written to simulate the robot's path tracking

control.The result is very good, Figure 18 to Figure 20 shows the robot can use the steering

function to do line-to-line, line-to-circle, circle-to-circle tracking motions. The LISP

program code will be provided in Appendix A.

positon

The. . a. a e)

Figure 18: The line to line path tracking simulation.
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Figure 19: The line to cirde path tracking simulation.
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2. Speed Control

As mentioned before, inside the control rule function, the robot's current

configuration will be used to calculate the robot's image. The steering function will be used

to compute the kappa. The velocity control function will take the commanded speed which

can be set by user program and use the kappa to compute the robot's translational and

rotational speed.

D. PWM VALUE CALCULATION

After computing the commanded translational and rotational speeds, the robot will

need to use these data to compute the right wheel and left wheel speeds so that the robot

will get the correct commanded speed. The robot's PWM value calculation function was

designed to do this kind of job.

1. Inverse Kinematics

The commanded rotational and translational speeds which have been computed

in control rule function are the desired speed of the robot. In the case of two-wheel-driving-

control mobile robot, the separated speed calculation for each wheel is needed. The

physical relationship between both wheels and the robot's speed is (Figure 21):

w: robot's rotational speed

V - robot's translational speed

2W = robot width

Vr = right wheel speed = V + W *o)

V! = left wheel speed = V - W

28
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2W

ftue 21: The relaton between wheels and the robot's body.

2. The PWM Values

After each desired wheel speed are calculated, the last step for the robot's motion

control is to convert the wheel speed to the motor control signals. The PWM value in

'Yamabico-1I' is the physical control signals for the driving motors The PWM value is

defined as an inter range from -127 to 127. A PWM value divided by 128 is equal to the

duty ratio of motor currents. The larger the absolute number, the more time will be

activated to the motor. The zero PWM value will let the motor have a free state which

means there is no any electrical currents to the motor. The absolute value of 127 will give

the motor the largest electrical power which means the motor will get the longest activating
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SThe positive or negative num ber w ill turn the m otor clockw ise or counterclockw ise.

By experimental results (those experiments will be described in Chapter VI), a very

reliable PWM value table is been provided in the motion control program (the code will be

shown in Appendix B). By giving the wheel speed, the PWM table function will output a

PWM value which guarantees the desired wheel speed.
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VI. EXEPERIMENTAL RESULTS

In Yamabico- 11, there are six wheels in total. Two wheels, lying on the robot's center

line, drive the robot. The remaining four wheels are smaller than the drive wheels and each

has a shock absorber connected to the robot's chassis, two in the front and two in the rear.

Two DC motors are used to drive the wheels, one for each drive wheeL There is a reduction

gear box connected between the motor and the drive wheel. Each drive wheel can be

controlled separately and all the robot's motion control theories are implemented by

successfully controlling each drive wheeL

The motor control board controls the motors. In Yamabico control program, the MML

system, there is an integer variable called 'pwm'. The pwm value is ranged from -127 to

127, its absolute value represents the amount of time that the motor will be activated and

its sign represents the motor rotational direction. The positive sign is clockwise for right

wheel control value (rpwm) and is counterclockwise for left wheel control value (pwm).

The negative sign is just opposite. Each motor is activated by the amount of time which the

pwm value represents. If we want the motor get half of the motor's maximum rotational

speed, we will set the pwm value to 64 or -64 and if we want the motor get all rotational

speed we will set it to 127 or -127.

The real relationship between the pwm value and the actual robot velocity are obtained

by experiments. Figure 22 shows the relationship between the pwm value and the robot's

forward speed when the motor's control frequency is 7.9 KHZ. Figure 23 shows the curve

of the pwm value and the robot's backward speed at the 7.9 KHZ. These experimental

programs are provided in Appendix C.
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Figure 22: pwm value - forward speed curve of 7.9KHZ.
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Figure 23: pwm value- backward velocity curve of 7.9KHZ.
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These curves show that the robot starts to move forward at about a pwm value of 50 to

overcome the robot's friction and starts to move backward at about -55. The robot's

maximum velocity is about 67 cm/s at the pwm value of 127 or -127. From these curves, a

precise motor control table is established. In Yamabico- Il's motion control program, a

function named 'pwmJookup' has been written for this purpose (see Appendix B). Figure

24 shows the curves are different while the robot's speed is increasing or decreasing. For

the same robot speed, the pwm value required in the increasing stage is about 10 more than

that which is required in the decreasing stage.

70

60

50 5

30O

20

10

0

-10 I
0 20 40 60 so 100 120 140

pwm value (0- 127)

Figure 24: pwni-velocity curve for increasing and decreasing.

33



After the motor control table has been established, the relationship between robot's

actual velocity and commanded speed needs to be checked. Figure 25 shows this

relationship.The relationship between them is almost a forty-five-degree straight line. This

result shows that the robot control program will allow the robot to achieve a,% elocity which

is exactly the same as the commanded velocity. This capability is the very basis of wheeled

robot. The program of this test is provided in Appendix C.

actuaw velocity (=,A)
80

'vehicle, forward a Ied -
vehicle_backward..pee

60

40

20

0

-20

-40

-60

-80 I _ _ _ _ _ _ _
-80 -6u -40 -20 0 20 40 60 80

commanded velocity (an/s)

Figure 25: The actual speed-commanded speed curve.
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VII. FINAL RESULT

Figure 26 shows the robot has successfully executed a line-circle-line mission. The

robot's initial position was (0,-10) and its orientation was 0 degrees. The robot tracked on

the line Y- 10 until it reached the leaving point. After this point, the robe, tracked the circle

until it reached another leaving point. The robot transitioned from circle to line Y=10 and

stopped at point (0,10) with 180 degree of orientation. The user program is provided in

Appendix D.

150 1
S line~circle-line-tracking.o05•eb94' -

100

~50

; -50

-100

-150 i i i i
0 50 100 150 200 250 300

X - DISTANCE (cm)

Figure 26: A line to circle and back to line motion.
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Figure 27 shows the robot has executed a star-shaped motion mission, where the robot

has made some sharp and safe turns when the robot transitioned from one line to another.

This mission shows the robot's ability of tracking five lines with different orientations. The

stable and safe turning capability has been demonstrated in this mission. The user program

is provided in Appendix D.

80y
'star•*otion.05F.b94 -60 ----- .... .............. ---------------- -- ---- --------........ ...... ............ ...... ....

!20.

-20

0 20 40 60 80 100 120 140

X - DISTANCE (cm)

Figure 27: The Star-Shaped Motion.
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The implementation of a path-tracking nission mentioned in Chapter I is a combination

of several path elements. Figure 28 shows the robot has successfully executed the path-

tracking mission. The robot starts at point (0,0), then tracks on line Y = 50, when the robot

reaches to the optimum leaving point for transferring to line X = 200, the robot starts to

transfer to line X = 200 and tracks on this line until it reaches the specified point (200,150),

then the robot starts to transfer to its final path element, line X = 250, and then precisely

stop at the destination, point (250,300). The user program is provided in Appendix D.

350 p ,
'Path-tracking.27Jan94' -

300

250 ,

1200

~150

100

50- line 1

50 Po~~'

01
0 50 100 150 200 250

X-DISTANCE (cm)

FIgure 28: The robot executes a path-tracking mission.
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'Yamabico-I I' can use sonar as its environmental sensor to execute some obstacle

avoidance missions. Figure 29 shows the robot has tracked a line Y = 0 with a goal

configuration (500,0) and 0 degree orientation. The robot opens its front sonar while it is

tracking on its current path, as soon as the distance from an obstacle is less than 100

centimeter, it transitions to an avoidance path which is line Y = -100 and opens the side

sonar to detect the obstacle until it passes the obstacle. When the robot passes the obstacle,

it returns to its original path and stops at its final goal configuration. This user program is

in Appendix D.

250 T1 T 1 T

obstac1e-avjidance 07Feb94' -

200;.

150 -

100

so
50

S-50-

-100 .u 9 • ,m-

-150

-200

-250 . I.... I I I. I I I I.

0 50 100 150 200 250 300 350 400 450 500

X - DISTANCE (cm)

Figure 29: Obstacle avoidance mission.
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"APPENDIX

A. LISP PROGRAM FOR PATH TRACKING SIMULATION.

This is main program 'path-trackingo'

(defun path-tracking (delta-length vehicle path distance-constant)

(let*((const-k (/1 distance-constant))

(A (*3 const-k))

(B (* 3 const-k const-k))

(C (* const-k const-k const-k))

(closest-distance 1000)

(theta-difference 1000)

(image)

(differential-kappa)

(delta-kappa)

(current-vehicle))

(do ((length 0 (serf length (+ length delta-length))))

((or (and (< (abs closest-distance) 0.5) (< theta-difference 0.1))

(> length 600.0))

Tath-tracking-finished)

(setf image (update-image vehicle path))

(setf closest-distance (update-closest-distance vehicle path))

(setf differential-kappa (- (+ (* A (- (nth 3 vehicle) (nth 3 image)))

(* B (norm (- (nth 2 vehicle) (nth 2 image))))

(* C closest-distance))))

(serf delta-kappa (* differential-kappa delta-length))

(setf current-vehicle vehicle)
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(setf vehicle

(compute-next-configuration vehicle delta-kappa delta-length))

(Wet theta-difference (abs (- (nth 2 vehicle) (nth 2 imnage))))

(cw:draw-line (camnera-window my-camnera)

(cwmake-position :x (first current-vehicle)

:y (second vehicle))

(cwmake-position :x (first current-vehicle)

:y (second vehicle))

.brush-width 0))))
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This is updat-imageO

(defun update-image (vehicle path)

(cond ((- (nth 3 path) 0.0)

(let ((closest-distance (- (* (- (nth I vehicle) (nth I path)) (cos (nth 2 path)))

(* (- (nth 0 vehicle) (nth 0 path)) (sin (nth 2 path))))))

(list (+ (nth 0 vehicle) (* closest-distance (sin (nth 2 path))))

(- (nth I vehicle) (* closest-distance (cos (nth 2 path))))

(nth 2 path)

(nth 3 path))))

(t (Ie ((radius (t1.0 (nth 3 path)))

(origin-x (- (nth 0 path)

(* radius (sin (nth 2 path)))))

(origin-y (+ (nth I path)

(* radius (cos (nth 2 path)))))

(gamma (atan (- (nth I vehicle) origin-y)

(- (nth 0 vehicle) origin-x))))

(list (+ origin-x ( (abs radius) (cos gamma)))

(+ origin-y (* (abs radius) (sin gamma)))

(norm (+ gamma (* (IPI 2)

(/ (nth 3 pathXabs(nth 3 path))))))

(nth 3 path))))))
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7This is compute-next-configurationO

(defun compute-next-configuration (vehicle delta-kappa delta-length)

(let* ((new-kappa (+ (nth 3 vehicle) delta-kappa))

(delta-theta (* delta-length new-kappa))

(delta-I (* delta-length (/ (sin (t delta-theta 2)) (I delta-theta 2)))))

(list (+ (nth 0 vehicle)

(* delta-i (cos (+ (nth 2 vehicle)

(/ delt-tham 2)))))

(+ (nth 1 vehicle)

(* delta-i (sin (+ (nth 2 vehicle)

(I delta-theta 2)))))

(+ (nth 2 vehicle) delta-tei)

new-kappa)))

This is normO

(defun norm (angle)

(cond ((> angle PI)

(- angle (* 2 P1)))

((< angle (- PI))

(+ angle (*2 P1)))

(t angle)))
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This is updae-closest-distance 0

(defun update-closest-distance (vehicle path)

( (* (* (- (- (nth 0 vehicle) (nth 0 path)))

(+ (* (nth 3 path) (- (nth 0 vehicle) (nth 0 path)))

(* 2 (sin (nth 2 path)))))

( (- (nth I vehicle) (nth 1 path))

(- ( (nth 3 path) (- (nth I vehicle) (nth I path)))

(*2 (cos (nth 2 path))))))

(+ I (sqrt (+ (* (+ (* (nth 3 path) (- (nth 0 vehicle) (nth 0 path)))

(* 2 (sin (nth 2 path))))

(+ (* (nth 3 path) (- (nth 0 vehicle) (nth 0 path)))

(* 2 (sin (nth 2 path)))))

(* (+ (* (nth 3 path) (- (nth I vehicle) (nth I path)))

(* 2 (cos (nth 2 path))))

(+ (* (nth 3 path) (- (nth I vehicle) (nth 1 path)))

(* 2 (cos (nth 2 path))))))))))
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This is draw-grid 0

(defun draw-grid 0
(draw-line-in-camera-window my-camera '(0. 100.) '(1000. 100.))

(draw-line-in-camera-window my-camera '(0. 200.) '(1000. 200.))

(draw-line-in-camera-window my-camera '(0. 300.) '(1000. 300.))

(draw-line-in-camera-window my-camera '(0. 400.) '(1000. 400.))

(draw-line-in-camera-window my-camera '(0. 500.) '(1000. 500.))

(draw-line-in-camera-window my-camera '(100. 0.) '(100. 1000.))

(draw-line-in-camera-window my-camera '(200. 0.) '(200. 1000.))

(draw-line-in-camera-window my-camera '(300. 0.)'(300. 1000.))

(draw-line-in-camera-wmndow my-camera'(400. 0.) '(400. 1000.))

(draw-line-in-camera-window my-camea'(500. 0.) '(500. 1000.)))



This is draw-circle C)

(defun draw-circle (origin-x origi-y radius)

(cw:dmaw-circle-xy (camera-window my-camera) origin-x origin-y radius

:brush-width 3))

load other programs

(load "rigid-body.cl")

(load "robot-kinematics~cl")

(load "cameracI")

(setf my-camera (make-instance'camera))

(create-camera-window my-camera)
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B. MOTION.C

#finclude "mmLh"

FUNCTION : controlo
PARAMETERS: none
PURPOSE : Reads robot encoders to update odometry every 10 msec (INTVL) and

then sends commands to the motors that drive the wheels.
RETURNS : pwm commands to drive the left and right drive wheels.
CALLED BY : motor (assembly language code)
CALLS : evaluateincrementalmotiono, new-configO, store.loctrae_dataO

process-setrob0o, get-velocityO, simulatornewconfigO,
evaluate.pwmO.

long int controlO
{

double vl, vr,

double deltas delta.theta;

void storec_tracedataO;

void get-velocityo;

#ifndef SIM /* compute deltas, delta-theta, and velocities of left, right wheels *

evaluatejncrementaljmotion(&deltas,&deltheta,&vl,&vr);

new..config(deltas delta-theta); /* update current configuration */

store_c_trace_data(vehicle.t, vehiclek, uv, uw);

if (!motor-on) /* if the vehicle's motors are not on then return *1

return;

#endif

process-set.robOO; /* for set._rob function temporal exec */

get_velocity(&uv, &uw); /*calculate the translational and rotational velocities */
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#ifdef SIM

simulator-new-config(uv, uw); /* for simulator use only1

#endif

return evaluate-pwm(vL~vr); 1* Calculate pmw *

1*end control I
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FUNCTION :evaluate-incremnentaLmotion
PARAMETERS: delta-s, delta-theta, Aviyr
PURPOSE :get encoder information returns how far the left and right

wheels have moved forward in one step
RETURNS pointers of delta..s, delta...theta, vI, yr
CALLED BY : control()
CALLS :readjeftwhecL~encodero, read~righLwheel -encoder()

evaluate-jncrententalmotion(delta..s,deltajtheta,vl,vr)
double *delta...s,*delta-:theta,*vl,*vr;

double delta-r, deltaj;
double read jeft...wheel-encoderO;,
double read-right wheel~encoderO;

if (status!1= RMOVE)

tread = TREAD; /* Narrower trend width for forward motion ~

else

tread =TREAD...R;

delta~r = read-right..wheel encoderO;

delta_1 = readjleft...wheeLencoderO;

(*delta-s) = (delta-r + deltajl) / 2.0;

SS += (*deltag);

(*delta-theta) = (delta-y - deltaj..) / tread;

(*vr) = deltajr / LNTVL;, /* calculate left and right wheel velocity *

(*vl) = deltaj / NTrVL,
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FUNCTION: newsonfigo
PARAMETERS: delta.s, delta_theta
PURPOSE: Updates the robot's current configuration based upon

the input values of deltas and deltatheta.
RETURNS: none
CALLED BY: controlo
CALLS: none
COMMENTS: 19 Apr 93 - Dave MacPherson
TASK: Level 4 interrupt

void new.config(delta.s, delta-theta)
double delta.s, delta.theta;
{

double sinc;

double dtheta2 = delta_theta / 2.0;

sinc = deltams;

if (delta-theta)

sinc *= sin(dtheta2) / dtheta2;

/* Update The vehicle's odometry estimate *1
vehicle.x += sinc * cos(vehicle.t + dtheta2);

vehicle.y += sinc * sin(vehicle.t + dtheta2);

vehicle.t += delta_theta;

vehicle.k = kappa;

curx = vehicle.x;

cur..y = vehicle.y;

cur-t = vehicle.t;

S/* end new_config *1
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FUNCTION : process-set-robOO
PARAMETERS: none
PURPOSE : This function is for set_robO function temporal execution
RETURNS :none
CALLED BY: controlo
CALLS nornO

process-set_robO0

if (setting-configuration)
{

settingconfiguration = NO;
vehicle.x = setP.x;
vehicle.y = set_P.y;,
vehicle.t = normn(setP.t);
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FUNCTION: get-velocity()
PARAMETERS: uv, uw
PURPOSE: Determines the robot velocity and rotational

velocity based upon veLc and kappa.
RETURNS: *uv, *uw
CALLED BY: controlo
CALLS: commanded_velocityo, commanded.kappaO, transition.poinLtesto)
TASK: Level 4 interrupt

void getyvelocity(uv, uw)
double *uv, *uw;
{
switch (status)
{
case SSTOP:

lengthfs = 0.0;

veLc = 0.0;

if (waitcnt =- 0)

(*uv) = veLc;

(*uw) 0.0;

readjinstO;

} else

waitscnt--;
break;

case SLINE:

(*uv) = vel-c = commanded.velocityO/* commanded velocity */

(*uw) = commandedckappaO * veLc;/* commanded omega */
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if(gtetjinst != Put-inn)

if (zransition...poin~test(currentjrnage, getjnst->tp))

-no..o-paths;

current-robot-.path.pc = get-inst->c;

current~jobot-path.type = get-inst->class;

readinsto;

if (skipjflag...control)

current-robot..path.pc =getxinst->c;

read-insto;

skipjflag-control = 0.

case SBLINE:

(*uv) = vel-c = commanded-velocityo;/* commanded velocity *

(*uw) = commandeckatppaO * veLc;/* commanded omega */

if (vel..c < 0.5 && EU...DIS(currenuimage.x, cuffent~image.y,
cuffent-robot..path.pc.x, current-robot-path.pc.y) < 4.0)

status = SSTOP;,

read-instO;
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if (skipjflag-control)

currentjrobot-path.pc =get-inst->c;

read-jnstO;

skip jlag-control =0;

break-

case SCONFIG:

(* uv) = vel-c = comniandec-yelocityO; /* commanded velocity ~

current-image = update-cubicumage(vehicle~curentrobot...path);

/* Now update the global kappa that is used to control the robot's actual motion *
(*uw) = updatescubicjcappa(vehicle, currentjmage) * veLc;

/* There are many tests to see if the end of the spiral
has been reached, easiest is to compare image-s to

peomputed length of spiral, stored in pp.xO *
if (image-s > current-jrobot..path.pp.xO)

read-imsto;

I/* end if/

break;

case SPARABOLA:

break-

case RMOVE:

(*Uv) = 0.0;
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(*uw) - rveLc -get-rotationaLvelo;

break

case SERROR:

ve'sc = commanded~yelocityo;

if (veLc <c= VELI)

vel-c =O.0;

motor-.on = ON;

break-,

default

(*uv) -0.0;

(*uw) =0.0;

* ~end switch *

1*end get-velocityo *
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FUNCTION : simulator-new-config0
PARAMETERS: uv, uw
PURPOSE : For the simulator compute vehicle's configuration based on left

and right commanded wheel speed this is required in lieu of real
odometry

RETURNS :
CALLED BY: controlo

simulator_newconfig(uv, uw)
double uv, uw;,{

double delta-theta, deltadistl;

deltajtheta - uw * INTVL;

delta-distl = uv * INTVL;

vehicle.x += (cos(vehicle.t + delta_theta 2.0) * deltadistl);

vehicle.y += (sin(vehicle.t + delta..theta I 2.0) * deltadistl);

vehicle.t = vehicle.t + deltatheta;

vehicle.k = kappa;
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FUNCTION : evaluate.pwmO
PARAMETERS: Ipwmipwmvrvl
PURPOSE compute mcw and the pwm for left and right wheels
RETURNS : pointers of lpwm, rpwm
CALLED BY: controlO
CALLS : pwmnlookupO

long int evaluate..pwm(vlvr)
double vl, vr

int bufpwm;

int Ipwm, rpwm, IpwmO, rpwm0,

double uvl, uvr, delta yl, delta.vr,

double a = 0.7;

double pwm..IookupO;

tread2 = 0.5 * tread; /* If robot is in the rotate mode use wider trend width*/

uvl = uv - tread2 * uw; /* compute commanded left and */

uvr - uv + tread2 * uw, /* right wheel velocities */

delta.vl = uvl - vA

delta-yr = uvr - vr,

/* adjust pwm's based upon the difference between the
calculated wheel velocity and the odometry wheel velocity */

lpwmO = pwm.jookup(uvl) + kpw..b * delta_vl; /* left wheel *1

rpwmO = pwmjlookup(uvr) + kpw..b * deltajvr, /* right wheel */

lpwm = a * lpwmO + (1.0 - a) * lpwml;

rpwm = a * rpwmO + (1.0 - a) * rpwml;
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lpwmI - lpwm

rpwmnl - rpwm;

#ifndef SIM

if (mv-iirection < 0.0) /* set up motor control word (mncw) and
threshold pwm values *

bufpwm = lpwrm

lpwm = -rpwnm

rpwm = -bufpwnm

Incw = (mcWW & 0xf0fO) I Opwm > 071:2) 1 (rpwm > 0 ? OxOlOO : 0x0200);

if (lpwm > 127)
lpwm - 127;

else if (lpwm < -127)
lPWM = -127;

if (rpwm > 127)
rpwm - 127;

else if (rpwm < -127)
rpwin- -127;

return (lpwm < 16l1rpwm &Oxff);-

#endif
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FUNCTION: conmmndedyelocityo
PARAMETERS: none
PURPOSE: Detrmidnes the current robot translational velocity.
RETURNS: double
CALLED BY: controlo
CALLS: rest.of..patho
TASK: Level 4

double commanded~velocizyo

double vel...gg; /* temporary goal velocity *
double rest-of...pathO;

dvel - tacc * ~INTLy,.

if (status - SBLINE &&
2.0*tam * rest-ofpath(current-robot-path, cuffent-image) <=ý vels * veLc)

velcp - max2(vel..c - dvel, 0.0);

else

vel...gg = min2(vel..g, WHIEEL...MAX 1(I + TREAD /2 *fabs(kappa)));

if (vel-jg >- vel-c)
vel...c - rnin2(vel-.c + dvel, vel..gg);

else
veI-c = max2(vel-c - dvel, vel-gg);

delta-dist = NTVL * veLc;

return vel-c;

) * end commandec-velocityQ *



FUJNC11ON: conmmnded-kappa
PARAMETERS: none
PURPOSE: Main steering function for MML.
RETURNS: void
CALLED BY: stepper, getvelocityO
CALLS: limitO, updateimageO

double commandecdkappaO

I

double delta...d;

double dkappal;

double update-..elta...d;

double fimitO;

current-image = update-iniageo;

delta-d -update-.deltadO0;

dkappal = -aa *(vehicle~k - current..jmage.k)
-bb *(norm(vehicle.t - current~image.t))
-cc Umit(delta~d);

kappa = vehiclek + dkappal *deltajlist;

return kappa;

)/* conmmaded-kappa *
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FUNCTION: updatejimageO
PARAMETERS: vehicle, currentj-obot..path
PURPOSE: calculates the current-image for coinmandecLkappaO
RETURNS: CONFIGURATION
CALLED BY: cornranded..kappa
CALLS: sin, cos

CONFIGURATION update;jmageo

double radius, gamma, close...dist;

POINT origin;

CONFIGURATION image;

CONFIGURATION path;

/* 10/19/93 shorten globle variable current~robot-.path.pc *
path =cumrnt-sobot..path.pc;

if (path.k = 0.0)

close-list-=(((yebicle.y - pathy) *cos(path-t)) - ((vehicle.x -path.x) *sin(path.t)));

image.x = vehicle.x + close-dist *sin(path.t);

image.y = vehicle~y - close-dist *cos(path.t);

iniage.t =path.t;

image.k =path~k

else

radius = (1.0 /Ipath.k);

origin.xO = path.x - radius *(sin(path.t));
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origin.yO - path.y + radius *(cos(,path.t));

gamma - atan2(vehiclc..y - origin.yO,

vehicle.x - origin~xO);

image.x = origmi~xO + fabs(radius) * (cos(gamma));

image.y -origin.yO + fabs(radius) * (sin(gamma));

imagc.t norm(gamma + (PI/2)*(path.k/ fabs(,path.k)));

image.k pathk;

return image;
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FUNCTION: update deltajlQ
PARAMETERS: config, path
PURPOSE: calculates the ystar for coninandec-kappa()
RETURNS: double
CALLED BY: cornmaded~kappao
CALLS: sin,cos

double update...delta..d()

double delta...d;

CONFIGURATION path;

path = currenLrobot-path.pc;

delta-d = (-(vehiclex - path.x) * (path.k * (vehicle~x - path.x) + 2 *sin(path.t))

-(vehicle.y - path.y) * (path.k *(vehicle.y - pathzy) - 2 * cos(path.t)))
/ (1 + sqrt((path~k *(vehicle.x - path.x)+ sin(.path.t))
*(path.k *(vehicle.x - path.x)+sin(path.t))
+ ((path.k * (vebicle.y - path.y) - cos(path.t))
*(path-k * (vehicle.y - path.y) - cos(~path.t)))));

return delta...d;

/*end updatejleltadQ *
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FUNCTION: readleft_wheeLencoder
PARAMETERS: none
PURPOSE: Determines the distance moved by the left

wheel by reading the optical encoder.
RETURNS: dist_LI ( The distance moved by the left wheel

in the current vehicle control cycle).
CALLED BY: evaluate_incremaental_motion(
CALLS: none
TASK: Level 4 interrupt

double read-leftwheeLencoder(
{

double dist._l;

if (mv_direction > 0.0)
distLI = mydirection * dlenc * ENC2DIST;

else

distl = mydirection * drenc * ENC2DIST;

return dist-l;

}/* end readJeft_wheeLencoder */

63



FUNCTION: readcright-wheeLencoder
PARAMETERS: none
PURPOSE: Determines the distance moved by the right

wheel by reading the optical encoder.
RETURNS: dist_r (The distance moved by the right wheel

in the current vehicle control cycle).
CALLED BY: evaluateincrenentaLmotionO
CALLS: none
TASK: Level 4 interrupt

double read-right wheeLencoderO

double dist.r,

if (mvj.irection > 0.0)
dist r = my_direction * drenc * ENC2DIST;

else

distr = my_direction * dlenc * ENC2DIST;

return distr,

)/* read-right.wheeLencoder */
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FUNCTION: pwmjlookup
PARAMETERS: vel (wheel velocity)
PURPOSE: Determines the estimated pwm ratio given the desired wheel velocity

as an input.(This table get from 7.9 KHZ motor output curve)
RETURNS: pwm value based upon empri-11", #etermined velocity

vs pwm ratio curve.
CALLED BY: controlO
CALLS: none
TASK: Level 4 interrupt

double pwmjlookup(vel)
double vel;
(

double v;

double pwmvalue;

V = ve1

if (v - 0.0)
pwm.value = 0.0;

else if (v >= 0.0 && v < 25.0)
pwm..yalue = (0.96 * v + 49.0);

else if (v >= 25.0 && v < 53.0)
pwm.vyalue = (0.82 * (v - 25.0) + 73.0);

else if (v >= 53.0 && v <= 65.0)
pwm..value = (2.0 * (v - 53.0) + 96.0);

else if (v > 65.0)
pwmyalue = 127.0;

else if (v < 0.0 && v >= - 2.5)
pwmnvalue = (1.2 * ( v ) - 54.0);

else if(v < -2.5 && v >= -13.0)
pwm..value = (0.76 * (v + 2.5) - 57.0);
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else if (v < -13.0 && v >= -20.0)
pwmyvalue - (0.43 * (v + 13.0) - 65.0);

else if (v < -20.0 && v >= -34.0)
pwmtivalue - (1.0 * (v + 20.0) - 68.0);

else if (v < -34.0 && v >= -41.0)
pwm_value = (0.7 * (v + 34.0) - 82.0);

else if (v < -41.0 && v >= -49.0)
pwmvalue = (1.5 * (v + 41.0) - 87.0);

else if (v < -49.0 && v >=- -62.0)
pwmyalue = (1.1 * (v + 49.0) - 99.0);

else if (v < -62.0 && v >= -65.0)
pwm_value = (2.3 * (v + 62.0) - 113.0);

else
pwmvalue - -127.0;

return pwmnvalue;

S/* end pwm lookup *1
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C. SPEED TEST PROGRAM

#include "minml.h"

*This is a program of testing robot motor(forward)
*use this program to replace controLc of MML
* and use user.c which is provided at the end of this section

*to download the robot actual speed, this program will let robot go forward

controlmotorjtestforwardO
I
register int Ipwm, rpwm;

register double vl, vr, vel;

register double delta.s, delta.theta;

void storeoc_uace-dataO;

double read-right.wheel-encoderO;

double read_leftwheelencoderO;

double pwmjlookupO;

deltas = (read-right-wheel encoderO + readleft wheel_encoderO) /2.0;

vel = delta.s / INTVL;

if (pwm < 127.0)
I

pwm = pwm + 0.05;

)
else
I

pwm = 127.0;

)

rpwm = lpwm = (int)pwm;
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rncw = (Mcw & OxfMf) I (Ipwm > O?1:2) 1 (rpwm > 0 ? OxOlOO: 0x0200);

if QIpwm > 127)
lpwm = 127;

else if (lpwm < -127)
lPWM = -127;

if (rpwm > 127)
rpwm = 127;

else if (rpwm < -127)
rpwm -127;

if (Itraejf 10) /*' trace loc
storejoc;racedata(pwm, vel);

return (lpwm« < 16l1rpwm &Oxff);

)*end control~motorjtestjincrease *

68



*This is a program of testing robot motor(backward)
*use this program to replace control.c of MML
* and use user.c which is provided at the end of this section

*to download the robot actual speed, this program will let robot go backward

control-motorJest-backwardO
{
register int lpwm, rpwmn

register double vA, vr, vel;

register double delta-s, delta-theta;

void store-jocjrace-dataO;

double readright.wheel.encoderO;

double read_left_wheel_encoderO;

double pwmjlookupO;

delta-s = (read.ight-wheel-encoderO + read-leftwheeLencoderO) / 2.0;

vel = delta-s / NTVL;

if (pwm > - 127.0)
{

pwm = pwm - 0.05;

I
else
{

pwm = -127.0;

rpwm = lpwm = (int)pwm;

mcw = (mcw & OxfOfO) I (lpwm > 01:2) I (rpwm > 0 ? OxOlOO Ox0200);
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if (Ipwm > 127)
lpwm = 127;

else if (lpwm < -127)
lpwm= - -127;

if (rpwm > 127)
rpwm = 127;

else if (rpwm <-127)
rpwni -127;

if Gvltracf!=) 1* mmac boc
store-loc...trcejlata(.pwm, vel);

return (Ipwm < 16tr pwm &Oxff);

)*end controLm..rotor-test increase *
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*This is a program of testing robot decreasing speed
*use this program to replace control.c of MML
* and use user.c which is provided at the end of this section
*to download the robot actual speed.
*the robot will go to 65 cnvs then decrease the speed to 0

control-motor-testdecreaseo
4

register int Ipwm, rpwm;

register double vl, vr, vel;

register double delta.s, delta-theta;

void storeoctace_dataO;

double readjright..wheeLencoderO;

double readjeft_wheel_encoderO;

double pwrnjookupOQ

deltas = (readright-wheel_encoderO + readjeft.wheelencoderO) /2.0;

vel = deltams //lMIY

if (vel >= 65.0)
I

top-speed = 1.0;

)

if (top.speed =- 0.0)
I

if (pwm < 127.0)

pwm = pwm + 1.0;
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pwm = 127.0;

else

if (pwm > 0.0)

pwm = pwm - 0.05;

pwm = 0.0;

rpwm = Ipwm = (int)pwnr;

m-cw = (mcw & Oxf~fU) I (lpwm > 0?1:2) 1 (rpwm > 0 ? OxOlOO: 0x0200);

if (Ipwm > 127)
Ipwm = 127;

else ff (lpw < -l127)
lpwm =-127;

if (rpwm > 127)
rpwm = 127;

else if (rpwm < -127)
rpwm --127;

ifftacj0) /* trameloc *
store-jocjraccjlata(pwm, vel);

return (Ipwm <I 6 1ipwm &Oxff);

/*end control-motorjest...decras *
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*This is a program of testing robot speed(forward)
*use this program to replace controlic of MML
* and use user.c which is provided at the end fo this section
*to) download the curve of robot actual speed v.s. desired speed

controLvelocity-Va-forwardO

register int lpwmn, rpwmn

register double A, yr, vel;

register double deltajs, delta..theta;

void store-loc-trace-.dataO;

double read-right-wheel~encoderO;

double read~left-ýwheel-encoderO;

double pwmjlookupO;

delta...s = (read-Aght-wheeL encoderO + readjeft~wheel-encodero) /2.0;

vel = delta...s / ITVL;

rpwm = Ipwm = pwmjookup(desircd..yel) + kpw...b * (desired-vel - vel);

mncw = (mcw & MOMff) I (lpwm > 0?1:2) I (rpwm > 0 ? OxOlOO 0x0O200);

if (lpwm > 127)
lpwm = 127;

else if (lpwm < -127)
pwm = -127;

if (rpwm > 127)
rpwm = 127;

else if (rpwm < -127)
rpwm = 127;
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if (desirec-vei <= -65.0)

desirecvlyc= -65;

else

desired-Yel =desired-veT - 0.01;

if (ltae-f !=O0) /*tace loc *
ste-orbcý-twae..data( vel, vel, vel, vel);

return (lpwm <« 16l1rpwm &Oxff);

I/end control~velocityjtest *
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*This is a program of testing robot speed(back-ward)
*use this program to replace control.c of MML
* and use uscr.c which is provided at the end fo this section
*to download the curve of robot actual speed v.s. desired speed

control~velocity...testbackwardo

register hit lpwm, rpwmn;

register double vl, vr, vel;

register double delta-s, delta~teta;

void store-loc-trace...dataO;

double read-right-wheel-encoderO;

double read-eft.wheeL~encoderO;

double pwnxjookupO;

delta-s - (read-right...wheel-encoderO + read-left....heeLencoderO) /2.0;

vet = delta...s / INTVL;-

rpwm = lpwm = pwmjlookcup(desiredyel) + kpw-b * (desired-yel - vet);

MCW = (mcw & Oxf~fiD) I (lpwm > O?l:2) 1 (rpwm > 0 ? OxOlOO: 0x0200);

if lpwm > 127)
lpwm = 127;

else if (lpwm < -127)
lpwmn = -127;

if (rpwm > 127)
rpwm = 127;

else if (rpwm < -127)
rpwm = 127;
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if (desirec~yel >w 65.0)

desired-yel = 65;,

else

desired-vel = desired-.vel + 0.0 1;

if (Itrace-.f 1= 0) 1* trace loc
store-joc-trace-data( vel, vel, vel, vel);

return (lpwmn «16 1 rpwm & Oxff);

)*end control~velocityjtestn
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*Thisj is a userxc program for testing robot speed

#include 'inml.h"
user...speed-testO
I
CONFIGURATION start, second, third, circle;

buffer-loc = iiidexjoc = malloc(300000);

bufloc = indxloc = (double *)malloc(60000);

loc-tron(2,Ox0f,0);

def-configuration(.0., 0.C, 0.0, 0.0, &start);

set-rob(&start);

Iine(&start);

wait~timer(6500);

locjtroffO;

halto;

motorý_on = 0;

Ioc-trdunip("actual-speed-vs-desired-speed");
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D. USER PROGRAM Q1W FINAL RESULTS

*'Thi is a user.c program for line to circle to line motion

#include "ninth"

user()

CONFIGURATION start, second,circle;

bufferjoc, = indexloc: = malloc(300000);

bufloc: = indxloc: = (double *)malloc(60000);

loc-tron(2,0x0f,5);

def~configuration(O0O,-l0.0, 0.0, 0.0, &start);

defsconfiguration(O.O, 10.0, PI, 0.0, &second);

defsonfiguration(200.0, -50.0, 0.0,0.02, &circle);

seLrob(&start);

speed(20.0);

line(&start);

Iine(&circle);

Iine(&second);

while (vehicle~x >= 0.0);

stop0o;

loCjtroffO;

locjtrdump("line-circle-line-tracking.05Feb94");
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Th1is is a userxc program for a star-shaped motion

#include "niml.h"

user()

CONFIGURATION start~one~two,three~four~five;

double angle 1;

double DISTANCE;

double DISTI;

double DIST2;

DISTANCE = 110.0;

DISTI. = 150.0;

DIST2 = DISTI - DISTANCE;

r...printf(" \12 This is a star-motion program.");

def...configuration(0.0,0.O,0.0,o.0, &start);

det~configuration(DISTANCE,o.0o0.0,0.0, &one);

de-ofgrto(IT-o(I5)DSAC~i(I5*ITNE

2.5 1,0.0, &two);
def~configuration(DISTl-cos(P1/5)*DISTI + sin(PI/10)*DISTANCE,

sin(PJ/5)*DIST1..cos(pI1/0)*DISTANCE,5.02,0.0 &three);
de-ofgrto~o(I5)DSIsnP/0*IT2

sin(PI/5)*DISTl-cos(PVI/)*DIST2,7.53,0.0, &four);

det-configuration(cos(PL/5)*DISrz,sin(PI/5)*DIS77, 10.04,0.0, &five);

set..rob(&start);
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spced( 10.0);

bufferiloc = indexjoc = malloc(300000);

bufloc = indxloc = (double *) malloc(60000);

loc-tron(2,Ox3f,5);

bline(&one);

bflne(&two);

bline(&fthr);

bline(&four);

line(&five);

while(vehiclejc>-0.0);

stop0o;

boc-troffO;

loc-trdump("start-motion.05Feb94");
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*This is a uscr.c program for path tracking mission

#include "mmldh"

user()

CO{ GR77Nsat
CONFIGURATION strrt;

CONFIGURATION fistcn;

CONFIGURATION stcond;

fCONFIGURATIonON0 third0; 00,&sar)

def-configuration(.0O, 50.0,0.0, 0.0, &istat);

def-configuration(200.O, 150.0, BPI, 0.0 ,&second);

def-configuration(250.O, 350.0, HPI, 0.0, &third);

bufferJoc = index-loc = malloc(300000);

bufloc = indxloc = (double *)nlaloc(60000);

loc-tron(2,Ox0f, 10);

set-rob(&start);

speed(20.0);

Iine(&flrst);

line(&second);

while (vehicle.y <150);

skipO;



while (vehicle.y <350);

stopoo;

lbcýtroffo;

locýtrdump("Path-tracking.27Jan94");
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*This is a user.c progrmn for obstacle avoidance

#include "rmml.h"

userO
I
double hiti 1;

double hitl2;

CONFIGURATION p1, p3,start;

def configuration(O.O, 0.0, 0.0, 0.0, &start);

def~configuration(500.0, 0.0, 0.0, 0.0, &pl);

def configuration(500.O,- 100.0,0.0,0.0, 4p3);

buffer-loc = mndcxloc = mnafloc(300000) ;

bufloc: = indxloc = (double *)malloc(60000);

loc-tron(2, Ox3f, 30);

hitllI = 9999.9,

hit12 m9999.9,

set-rob(&start);

specd(20.0);

enable..soar(FRONTR).

hitl 1 m sonar(FRONTR);
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while(hitl 1 >= 100.0 11 hidi 1 0.0)
I

hiti 1 = sonar(FRONTR);

skipO;

linc(&p3);

cnableý.-.sonar(LEFMF;

hit 12 =sonar(LEFTIF);

while(hitl2 >= 999.0 11 hit12 0.0)

hit12 = sonar(LEFT?);
I

while(hitl2 <= 150.0)

hit12 = sonar(LEFTF);

while~hiiz2 >= 999.0 11 hit12 0.0)

hit12 = sonar(LEFTF);

whilc(hitl2 <- 150.0)

hitl2 = sonar(LEFTIF);

skipO;

blic&p 1);

while (vehicle~x < 500.0);

disable-sonar(FRONTR);

disablc.sonar(LEFM.)
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loc-troffo;

miotorýon - 0;

ocý_trdurnip("obstacle-avoidance.07Feb94");
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